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Diagrammatic Expansion and Metastability 
in the Random-Field Ising Model 
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Within the perturbation diagrammatic expansion we discuss the origin of dif- 
ferences in determinations of the lower critical dimension of the random-field 
Ising model and show that below four dimensions metastability and hysteresis 
occur. We also explain the occurrence of a quasicritical d =  2 behavior at weak 
random fields, which is responsible for local stability of the ordered state above 
two dimensions. 
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1. I N T R O D U C T I O N  

At the early history of investigation of the critical behavior of the random- 
field ][sing model (RFIM), the perturbation diagrammatic expansion ~ 4) 
seemed to give a proof of a dimensional reduction in critical indices from 
the d-dimensional RFIM to the d=  d - 2  pure Ising model. When applied 
to determination of the lower critical dimension (LCD) of the RFIM, this 
reduction gives d~ =3. This is, however, in contradiction with the 
simultaneously developing domain-wall theories, ~5 7) which predict d l =  2. 
Since more and more arguments, both theoretical and experimental, ~8 ~3~ 
were presented to support the notion that the LCD is d l =  2, the diagram- 
matic approach was discarded as unreliable, at least below four dimen- 
sions. The objections raised against the perturbation theory are essentially 
of two kinds. First, the Griffiths singularities hinder the summation of 
diagrams and may screen the most singular contributions to the free 
energy. (t4) Second, because of metastability, the proof of Ref. 4 is 
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invalidated. (15) Though not concrete, this criticism reveals two important 
issues of the RFIM. The first concerns the true critical behavior, the 
existence of sharp phase transitions, and validity of a dimensional reduc- 
tion [i.e., either d = d -  2 or d=  d -  2 + ~/(d)]. The perturbation theory and 
scaling-type arguments differ on this significantly in low dimensions (d< 4). 
The second issue concerns metastability, irreversibility, and hysteresis 
effects that affect determination of the LCD. They were completely neglec- 
ted in the theories based on perturbation expansions. 

We discuss in this paper the source of different conclusions on the true 
critical behavior of the RFIM, which lies in the assumption, based on the 
linear response theory, of some clustering used in the scaling arguments 
and violated in the diagrammatic approach. Further, we show, using a 
simple dimensional analysis, that below four dimensions the random 
system undergoes a crossover from a quasicritical d=  2 to the true critical 
d = d - 2  behavior. Because of this, metastability appears and the results of 
the perturbation theory depend on the way the diagrams are summed. We 
must investigate separately different histories of the sample. When the 
sample is cooled in the field (field cooling, FC), long-range order (LRO) 
cannot be achieved in d~3 ,  while in the zero-field cooling (ZFC), i.e., 
when the field is applied only after the sample is cooled below the Curie 
temperature Tco, LRO persists at weak fields in d>2.  Thus, LRO is 
locally stable in d >  2 and the lower critical dimension is dl= 2 even in the 
expansion into the most divergent diagrams. The criterion for deter- 
mination of the LCD heretofore used (1~ cannot be applied, since it neglects 
metastability and thus concerns only the existence of a sharp phase 
transition. The stability of LRO is decided from quasicritical behavior. 

2. P E R T U R B A T I O N  THEORY 

The model is defined by the lattice Hamiltonian 

H= - J  Z SiSj--ZhiSi, Si= • (1) 
( 0 )  i 

where h~ is a random field with a site-independent probability distribution 
P(h). The density of the averaged free energy for the quenched model is 

1 
f = - - - ( l n T r e  ~H)a v (2) 

/~N s 

where N is the number of lattice sites and fi= (kBT) -1. Perturbation 
theory of the critical behavior of the RFIM investigates only the divergent 
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part of the free energy (2). Thus, in the first step, we neglect thermal 
fluctuations and replace (2) by a mean-field expression: 

fMv-- J~ Z m i m j + f l Z h i m i - 2  In - -  
( 0 )  i " 

1 - m  i 
+ @ - ~ 2 )  In ( - T - ) I )  a V (3) 

where mi is a solution of the inhomogeneous mean-field equations 

\ 
m/= tanh j~  hi+J ~. mj) (4) 

j J 

IJ il = I 

In the second step, for small random field h and magnetizations rn i, we 
replace (4) by the Landau-Ginzburg equation: 

m, = flh,(1 -- f12h2/3) +/~J(l -/~2h2) m ~ -  ~3j2h i 
i A,J2 

l i  J l  = I [ j ~  i[ = l 

m h m j2 

- -  g o f l  3J3 2 m h m j 2 m j 3  ( 5 )  
/i, &,./3 

IJ~ iL = 1 

Equation (5) is the starting point for the perturbation expansion, that is, 
expansion in the bare coupling constant go= 1/3. The solution of (5) is 
inserted into (3) and the averaging is done in such a way that only the 
most divergent contributions are taken into account. Diagrammatically this 
means that only two types of propagators appear: connected (solid line) 
and disconnected (crossed line) correlation functions Z and Z dis. They are 
defined in the momentum space as 

z(q) = ~ av = 1 -- zflJe(q) X(q) (6) 

;(diS(q) = (mqrn q)av = fl 2h2 A(q) )~(q)2 (7) 

where - 1 ~< e(q) ~< 1 is the dispersion relation on the lattice, z is the coor- 
dination number, h 2 -  (h2)~v, and s and A(q) are the self-energy and 
the vertex functions, respectively. The perturbation theory expresses these 
two functions in diagrams with bare propagators gO(q) and z~  for 
which N~ = A~ = 1. The most divergent part is obtained by neglecting 
diagrams with loops in X ~ i.e., if cutting the diagrams along crosses, only 
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connected tree diagrams are left. The functions S(q) and A(q) are not 
independent in this theory. They are connected by a functional relation 

A ( q ) = l ~  3S(q) 
3zO(q, ) z~ 2 + 1 (8) 

where S(q) depends on 7~ ') and Z~ ') through the diagrammatic 
expansion. Thus, at criticality for q ~ 0 

S(q) ~ X o - S ,  q2 - .  (9) 

and 

A ( q ) ~ A o q  -~ (10) 

Relation (10) is crucial since it says that A(q) becomes divergent with non- 
zero ~/. This divergence breaks down the clustering property of the linear 
response theory 

(zh(q) Zh(--q) )av ~ z(q) z(--q)  (11) 

where zh(q) is the field-dependent correlation function. Simple global 
scaling arguments 15--7) always use somehow this property and it is utilized 
equally in Schwartz's self-consistent theory. (1~ It was recently pointed out 
by Krey (~6) that just (11) is the weak point of the theories leading to dt = 2. 
Up to now, there is no convincing argument whether (10) or (11) holds. It 
is, of course, beyond perturbation theory to prove (10) or (and) disprove 
(11). Thus, any kind of rigorous result on this issue would be very helpful. 
It was shown recently that higher order field cumulants change the powers 
of the leading divergences, ~17) but their effect seems to be the same as that 
of a very weak random field investigated below. It can also be shown that if 
(11) is assumed as a constraint in the standard theory, (18) the resulting 
dimensional reduction is d---> d =  d - 2  + q(d) as obtained in Refs. 1 and 10. 
Relation (11) is currently preferred, since it gives the correct LCD. In the 
next section we show that even (10), and thus the expansion into the most 
divergent diagrams, does not contradict the local stability of LRO in d >  2. 

3, D I M E N S I O N A L  A N A L Y S I S  A N D  T H E  
L O W E R  C R I T I C A L  D I M E N S I O N  

Perturbative investigation of the critical behavior of the RFIM is 
based on dimensional analysis of diverging diagrams. We shall assume that 
the only relevant length is the correlation length ~ ~ oe (i.e., one-parameter 
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scaling) and that the critical behavior can be deduced entirely from the 
dimensionality and the number of components (propagators in closed 
loops) of the most divergent diagrams. We extract the divergent (dominant 
at finite ~) part of the d-dimensional RFIM in a given order of the pertur- 
bation expansion (loop expansion) and compare the divergence with the 
corresponding diagrams of a d-dimensional pure model in the Landau-  
Ginzburg form. Neglecting the finite parts, we obtain an order-of-magnitude 
equivalence and a dimensional reduction d ~  d of the RFIM to a pure 
model, not necessarily the Ising model. 

The theory is determined by two parameters: random-field amplitude 
h and temperature T. We shall use dimensionless units, multiples of zJ. We 
shall investigate only finite temperatures T <  Tco. First, we assume that 
h/T does not scale with ~ (i.e., ~ l ~ h / T ~ ) .  We rescale the bare 
correlation functions 

zO(q) = ~2)~O(~q), )~0,dis(q) = ~4~0,dis(~q) (12) 

where 2 ~ and )7o,ais are finite [~-~ ~;~O(~q), )~0,dis(~q)~] .  The most 
divergent diagram with L loops, I internal lines, and E external legs scales 

F,.L(q~,..., qe) = ~L(2 dl+2fe+,/F,.c(~q~,... ' ~qE) (13) 

since just L internal lines are crossed. The corresponding diagram in the 
d-dimensional pure model scales 

~ L d + 2 ( E + I ) F t  (]:qr 
Fz.r(ql ..... q~) = ~ I.tk~-~/1 ..... ~q)r) (14) 

Comparing the powers of ~ of the both expressions yields d = d -  2 in all 
orders of the perturbation expansion. 

This argument is valid only if h/T>> ~-~ or the critical value h,. of the 
random field at a given temperature is nonzero in all orders of the pertur- 
bation expansion. This is violated at weak random fields below four 
dimensions./tT~ The self-consistent one-loop approximation in the lowest 
order of h 2 gives the most divergent contribution 

( h + m )  2 h 2 1 ~ e(q) 2 (15) 
Z =  1 T 2 T4N [1 - X e ( q ) / r ]  2 

where m is the spontaneous magnetization. The only critical curve in this 
approximation is hc=0,  T<~ Tco. The limit h -~0  in the paramagnetic 
phase (m = 0, To < Tco) is 

~ -  F h2 e(q)2 -2  o (16) (m~)av 
/ ~ N ' ~  [1 - Xe(q)/T] 2 
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where 2 o = ~ ( T c o - T o ) .  The h affects the scaling and r and h are 
correlated. From (16) it follows that 

= (~o T~o/fo) 1/(4-a) h -~~  (17) 

where f0 is an integral over the momenta and is of order unity, v ~  
2 / ( 4 - d ) .  Using relation (17), we obtain a modified scaling of the discon- 
nected correlation function 

zO.dis(q) = ~d)~0.dis(~q) (18) 

Neglecting again the finite parts, we obtain d =  2 for the effective pertur- 
bative dimensionality of the RFIM in this region, using (13), (14) and (18). 
In dimensions d >  2, the reduced model has one component corresponding 
to the internal propagator Z ~ representing fluctuations of the random 
field. To see what happens when we sum the higher order terms of the per- 
turbation series, we investigate FC and ZFC separately. 

We assume in both cases that 

= f ( h ,  T), h =g(~, T), T =  t(~, h) (19) 

are well-defined functions. Simulating FC, we fix ~ < ~ (but large) and h 
during the summation of diagrams. For a sufficiently small h and T <  Tco, 
(17) is satisfied in approximation (15). The effective dimensionality d =  2. 
Higher order contributions cause an increase in temperature and generate a 
nonzero critical temperature To2. The resummation of the whole series 
modifies a scaling of the correlation length and the disconnected suscep- 
tibility as 

= A ( T -  Tc2) ~2, ;~diS(q) = ~d %~dis(~q) (20) 

where v2 ~ 1, t/2 ~ 0.25 are critical indices close to those of the pure d =  2 
Ising model. The equality is only approximate, since we disregarded the 
symmetry factors of the diagrams. According to (17) and (20), the tem- 
perature after resummation will be 

T, = Tc2 + (2oT~o/Af) t/(a-4~v2 h '~~ /v2 (21) 

Thus, around this temperature, the model effectively behaves like the d =  2 
pure Ising model. When we lower the temperature in FC, ~ increases and 
the effective dimension does not change unless 

T <  T2 ~ Te2 + h ~/~2 (22) 
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where v Z = 2 / ( 4 - d - q j .  Below the temperature T2, the constraint 
<m~>av ~< 1 interferes. The correlation (17) between h and ~ dies out (h/T 
no longer scales) and the system undergoes a crossover from the effective 
dimensionality d = 2  to d = d - 2 .  The transition at To2 is inevitably 
destroyed and the true critical behavior (if any) calculated in the effective 
dimension d =  d - 2  slowly settles down. 

In ZFC we fix ~ < c ~  and 0 <  T <  Too during the summation. 
Switching on a small random field of order h o ~ T~ -1/v~ we are still in the 
ordered phase in approximation (15). We can bound the dominant con- 
tribution of X ~ by (18) and the system again feels an effective dimension 
d = 2 .  The sum of the rest of the most divergent diagrams lowers the 
starting random field ho and generates a critical field h~. 2 > 0 below which 
the state is ordered if d~>2. After resummation, the correlation length 
scales 

2 

= A'H(hc2 - h ) - v ,  (23) 

If now 

h<l<.2/(1 + x), x =  (fAH)~/2/mo T (24) 

where m o is the zero-field magnetization, the system feels the effective 
dimension d = 2  and remains ordered. For stronger fields the bound (18) 
no longer holds, again because of the constraint <m~>av~<l, and the 
system undergoes a crossover to the effective dimension d = d - 2 .  
According to this, the transition to the paramagnetic phase cannot be 
second order if d ~< 3. In 3 < d < 4 the transition can, in principle, be second 
order, which depends on the temperature and the way the crossover occurs. 

We now deduce the LCD. We have seen that LRO can exist in ZFC 
even if there is no sharp transition from the paramagnetic phase. That is, 
we have shown that LRO is locally stable in d >  2. The case d =  2 must be 
treated more carefully. From (12) and (18) it follows that •O(q) and 
X~ scale in the same way. Thus, to keep the most divergent terms of 
the perturbation expansion, we must include the loops in 7~ (i.e., the 
thermal fluctuations), since they equally contribute to the most divergent 
part of the series. Then we have two internal propagators in the loop 
expansion and the random model reduces to a pure model with n = 2 com- 
ponents. In such a case, the critical random field h~,2 = 0 and LRO at finite 
temperatures is unstable against the perturbation of a weak random field. 
In d >  2, at weak random fields ordered and disordered phases coexist and 
we cannot decide, using this qualitative analysis, what phase is at 
equilibrium. Numerical calculations {~9) indicate that it is the ordered one. 
That is, the lower critical dimension is d l =  2 also in the expansion into the 
most divergent diagrams. 
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